深度融合的方式
目前,人工智能技术还停留在初步应用层面,其深度还需要挖掘、广度还需要扩展,融合的方式也需要深入地进行探索。人工智能在媒体领域的大部分应用只是将现有的研究成果迁移到媒体行业,如果媒体想要更深入地参与到人工智能潮流中,就要积极地投入到算法的开发中,在人工智能领域中开辟出自己的空间,如此,才能使人工智能在媒体行业应用更加成熟。
数据安全与隐私
当人工智能应用飞速发展,人们很容易忽略在人工智能应用中的安全问题。2018年Facebook的数据泄漏事件折射出的数据安全漏洞引起社会关注,再一次提醒我们要严肃对待数据安全及隐私等问题。用户在媒介接触的过程中,用户数据和个人资料越来越多地交付给媒体,媒体在使用这些数据为用户提供更好服务的同时,需要权衡智能化用户体验和用户数据安全之间的关系。欧盟发布的通用数据保护条例(GDPR)于2018年5月25日正式生效,根据其条款,组织不仅必须确保在合法和严格的条件下收集个人数据,而且收集和管理个人数据的组织将有义务保护其免遭滥用和泄漏,并尊重数据所有者的权利,旨在确保人们可以掌控其个人数据。
坚守媒体的价值观和底线,保障数据安全,尊重用户隐私十分重要,媒体应思考在保护用户数据方面是否存在漏洞以及如何落实相应的人工智能安全策略。
人才培养
媒体领域对于人工智能人才的需求量还很大。要走出人才窘境,一方面要完善人才引进和培养规划,提升媒体从业人员的大数据和人工智能技能和素养,补齐人才短板。特别是要引进掌握坚实的传播理论基础,既懂媒体传播规律又懂大数据、人工智能的复合型人才,逐步形成与智能化媒体业务形态相适应的人才布局。另一方面要优化原有人才结构。当智能机器人取代部分人力成为可能,智媒时代的媒体人要在行业的巨变之中找准自己的定位,提升自己的知识技能。无处不在的“共享”和“开源”的知识使我们学习和了解人工智能行业前沿技术,例如Google发布的机器学习工具AutoML,用户无需掌握深度学习或人工智能知识即可轻松培训高性能深度网络来处理数据。
媒体和媒体人要拥抱媒体智能化的时代,破除对于新技术的“恐慌”,加快知识体系更新,使专业素养和工作能力跟上智能时代的节拍。
智能媒体:未来无限可能
虽然智能机器距离接近人类学习、思考和解决问题的能力还很遥远,但是机器取代人力是大趋势。人工智能将不断地从媒体生产链条向内容创建生产环节突破,从而帮助媒体进行内容升级和用户体验升级。
内容生产是未来人工智能在媒体行业实现新突破的重要方面,虽然人工智能目前不能超越人类的创造力,但可以承担起一部分信息收集、数据整理和内容创作的工作,将媒体人从一些重复性的繁冗工作中解放出来,从而节省出时间用于创作和创造性工作。媒体也应积极探索新的与人工智能结合的工作方式,使得工作更高效智能。
此外,人工智能将通过多种方式增强并带来更好的用户体验。通过学习用户行为,了解受众偏好从而使用户获取到感兴趣的内容,并根据用户画像定制个性化的内容。运用人工智能技术捕获处理数据,精准理解用户需求,可帮助媒体实现更加精细化的用户划分和用户分析,提供更加人性化的服务。人机交互使得用户体验更加立体化和场景化。
人工智能有望改变媒体的一切,重塑媒体的整个流程。预计未来人工智能将融入到媒体运作的各个环节。但无论是人工智能本身还是其在传媒领域的应用,距离成熟都还有很长的路要走。人工智能在媒体行业的落地,需要更复杂、更全面的架构。构建以大数据和人工智能为核心的技术生态体系,基于媒体行业自身的数据构建具有针对性的人工智能系统,提升媒体与人工智能结合的成熟度。目前人工智能技术在媒体行业的应用并不完善,但并不阻碍我们对于其发展前景的期待。
如何充分地发掘人工智能的潜力是媒体和媒体人面临的大命题,我们应思考人工智能如何更好地与媒介进行结合,尝试在融合发展面临的问题中加入人工智能解决方案。未来,机器与人的共生将成为媒体常态,我们期待人工智能为媒体带来更好的未来,在技术的助力下走向真正的智媒时代。
(作者沈浩系华体会娱乐场 新闻学院教授、博士生导师;杨莹莹系该院新闻与传播专业媒介市场调查方向硕士生)
|